Brief Communications

Spirocyclohexadienones. 6*. Three-component synthesis of 1-R-3,3-dimethyl-2-azaspiro[4.5]deca-1,6,9-trien-8-ones

V. A. Glushkov, a* O. G. Ausheva, S. N. Shurov, and Yu. V. Shklyaeva

^aInstitute of Technical Chemistry, Ural Branch of the Russian Academy of Sciences, 13 ul. Lenina, 614600 Perm, Russian Federation.

Fax: +7 (342 2) 12 6237. E-mail: cheminst@mpm.ru

bA. M. Gorky Perm State University,

15 ul. Bukireva, 614600 Perm, Russian Federation.

Fax: +7 (342 2) 39 6367. E-mail: info@psu.ru

1-R-3,3-Dimethyl-2-azaspiro[4.5]deca-1,6,9-trien-8-ones were synthesized through three-component condensation of anisole, isobutyraldehyde, and a corresponding nitrile in dichloromethane in the presence of concentrated sulfuric acid.

Key words: spiro compounds, pyrroles, cyclohexa-2,5-dien-1-one, anisole, isobutyraldehyde, nitriles, the Ritter reaction, cascade heterocyclization.

Earlier,² we have synthesized 1-substituted 3,3-dimethyl-2-azaspiro[4.5]deca-1,6,9-trien-8-ones by the Ritter reaction. Later, a three-component synthesis of such compounds from anisole (or 1,3-dimethoxy- or 1,3,5-trimethoxybenzene), isobutylene oxide, and methyl thiocyanate in the presence of sulfuric acid has been described;³ isobutylene oxide was used to construct the C(3)—C(4) fragment of the isoquinoline ring.

We found that isobutylene oxide can be successfully replaced by an aliphatic aldehyde branched at the α -carbon atom, in particular, isobutyraldehyde. In the present work, we propose a convenient preparative "one-

pot" synthesis of 1-substituted 3,3-dimethyl-2-aza-spiro[4.5]deca-1,6,9-trien-8-ones from anisole, isobutyr-aldehyde, and a corresponding nitrile RCN in methylene chloride in the presence of sulfuric acid at -15 to 15 °C.

The process can be regarded as a combination of the known Baeyer⁴ and Ritter⁵ reactions finalized by intramolecular *ipso*-attack in an intermediate nitrilium ion **C** to form the azaspiro[4.5]deca-1,6,9-trien-8-one system (Scheme 1). As can be seen in the scheme, this reaction mechanism becomes possible because of equilibrium between carbenium ions **A** and **B**. The Baeyer reaction product, namely, 1,1-bis(*p*-anisyl)-2-methylpropane, was not isolated; apparently, the reaction of nitrile with the intermediate carbocation **B** is faster than

^{*} For Part 5, see Ref. 1.

Scheme 1

MeO
$$\longrightarrow$$
 + Me \longrightarrow MeO \longrightarrow MeO

1,2: R = SMe (1a, 2a); Ph (1b, 2b); CH₂COOEt (1c)

that of anisole with cation A. In addition, an equimolar ratio of anisole to a nitrile and an aldehyde should be taken into account.

This method was used to obtain spiran **2a** in 34% yield and previously⁶ inaccessible compounds **2b,c** in 10 and 30% yields, respectively. The ¹H NMR spectrum of **2c** suggests that this compound in DMSO-d₆ exists entirely in the enamine form, as has been observed earlier for ethyl (3,4-dihydroisoquinolin-1-yl)acetates.^{7,8} Z-Configuration of such compounds is due to an intramolecular hydrogen bond (IHB).^{8,9} Indeed, the absorption band of the ester group in the IR spectrum of **2c** is shifted to the low-frequency region (1615 cm⁻¹), which indicates the formation of an IHB between the carbonyl and NH groups.

We performed quantum-chemical calculations for the enamine and imine forms of spiran 2c using the semi-empirical SCF MO LCAO method in the AM1 approximation. The results obtained show that the Z-enamine form is more stable (the calculated enthalpy of its formation $\Delta H_{\rm f}$ is 339.91 kJ mol⁻¹) than the E-enamine and imine forms ($\Delta H_{\rm f} = 303.29$ and 319.48 kJ mol⁻¹, respectively).

The 13 C NMR spectra of compounds **2a**—**c** contain a characteristic signal at δ 72.4—76.4 for the spiro carbon atom.

The structures of compounds **2b,c** were also confirmed by their mass spectra. No molecular ion peak appears in the mass spectrum of **2b**; compounds **2b,c** decompose through loss of benzonitrile or ethyl cyanoacetate (for **2b** and **2c**, respectively) and the methyl groups (see Experimental).

Compounds 2a-c are rather stable and do not decompose under normal conditions for two to three months; however, in the presence of atmospheric moisture and acid traces, compound 2a virtually quantitatively transforms (through dienone-phenol rearrangement) into the corresponding p-hydroxyphenylethyl amide.²

Experimental

IR spectra were recorded on a UR-20 instrument (Vaseline oil, paste). ¹H NMR spectra were recorded on Bruker AM-300 (300 MHz) and Tesla-BS 487C (80 MHz) instruments with HMDS as the internal standard. ¹³C NMR spectra were taken

using a Bruker DRX 500 instrument (125.76 MHz). The mass spectra of compound **2b,c** were recorded on a Finnigan MAT instrument (EI, 70 eV). The course of the reaction was monitored and the purity of the products was checked by TLC on Silufol plates in chloroform—acetone (9:1); spots were visualized with a 3% solution of chloranil in toluene. Methylene chloride (Lancaster Co., Great Britain) was used. Quantum-chemical calculations were performed on a Pentium-133 PC with the MOPAC 7.0 program package. ¹¹

3,3-Dimethyl-1-methylthio-2-azaspiro[4.5]deca-1,6,9-trien-8-one (2a). A solution of anisole (5.4 mL, 0.05 mol), freshly distilled isobutyraldehyde (4.5 mL, 0.05 mol), and thiocyanate **1a** (3.5 mL, 0.05 mol) in 40 mL of CH_2Cl_2 was added dropwise at -15 °C to vigorously stirred 96% H_2SO_4 (12 mL, 0.22 mol). After 40 min, the reaction mixture was poured onto a mixture of ice (300 mL) and 20% NH_4OH (45 mL). The aqueous layer was separated, and the organic material was extracted with CH_2Cl_2 (3×20 mL). The combined organic phases were washed with water and dried over $MgSO_4$. The solvent was removed, and the residue was recrystallized from methanol with addition of water. The yield of compound **2a** was 3.7 g (34%), R_f 0.48. The melting point and spectroscopic characteristics of spiran **2a** are identical with those reported in Ref. 6.

3,3-Dimethyl-1-phenyl-2-azaspiro[4.5]deca-1,6,9-trien-8one (2b) was obtained analogously from anisole (10.9 mL, 0.1 mol), isobutyraldehyde (9.1 mL, 0.1 mol), benzonitrile (10.0 mL, 0.1 mol), and 96% H₂SO₄ (24 mL, 0.44 mol) in 100 mL of CH₂Cl₂ at 10 to 15 °C. Removal of the solvent gave a partially crystallized residue; the crystals were filtered off and recrystallized from hexane (100 mL) to give compound 2b (2.51 g, 10%), m.p. 130-132 °C, $R_f 0.53$. MS, $m/z (I_{rel} (\%))$: 148 $[M^+ - PhCN]$ (100); 133 (49); 104 (35); 77 (21). IR (Vaseline oil), v/cm^{-1} : 1660 (C=O); 1625 (C=C); 1605 $(C=N \text{ and } C=C_{arom}); 1575 (C=N). ^{1}H NMR (300 MHz,$ DMSO- d_6), δ : 1.45 (s, 6 H, C(3)Me₂); 2.23 (s, 2 H, C(4)H₂); 6.28 (d, 2 H, C(7)H and C(9)H, J = 10.2 Hz); 7.15 (d, 2 H, C(6)H and C(10)H, J = 10.2 Hz); 7.32 (m, 2 H, H_{arom}); 7.40 (m, 1 H, H_{arom}); 7.64 (m, 2 H, H_{arom}). ¹³C NMR (DMSO-d₆), δ: 30.22 (C(3)Me₂); 48.96 (C(4)); 60.71 (C(3)); 72.36 (C(5)); 127.26*, 127.83* (C(7), C(9)); 128.04, 130.27, 133.49 (Ph); 152.01 (C(6), C(10)); 164.02 (C(1)); 183.83 (C(8)). Found (%): C, 81.35; H, 6.90; N, 5.42. C₁₇H₁₇NO. Calculated (%): C, 81.24; H, 6.82; N, 5.57.

Z-1-Ethoxycarbonylmethylidene-3,3-dimethyl-2-aza-spiro[4.5]deca-6,9-dien-8-one (2c). A solution of anisole (5.4 mL, 0.05 mol), freshly distilled isobutyraldehyde (4.5 mL, 0.05 mol), and ethyl cyanoacetate (5.3 mL, 0.05 mol) in 30 mL of CH₂Cl₂ was added dropwise to vigorously stirred 96% H₂SO₄ (12 mL, 0.22 mol) while cooling it with water. After 40 min, the reaction mixture was poured onto a mixture of ice (150 mL) and aqueous 20% NH₄OH (45 mL). The aqueous layer was separated, and the organic material was extracted with CH₂Cl₂ (3×20 mL). The combined organic phases were washed with water and dried over MgSO₄. The solvent was removed, and the residue was recrystallized from ethanol. The yield of compound 1c was 3.92 g (30%), colorless plates, m.p. 195.5—197 °C, R_f 0.62. MS, m/z ($I_{\rm rel}$ (%)): 261 [M]⁺ (47); 246 [M — Me]⁺

This work was financially supported by the Russian Foundation for Basic Research (Project No. 01-03-96479).

References

- V. A. Glushkov, O. G. Ausheva, and Yu. V. Shklyaev, *Izv. Akad. Nauk, Ser. Khim.*, 2002, 654 [*Russ. Chem. Bull., Int. Ed.*, 2002, 51, No. 4].
- O. G. Ausheva, V. A. Glushkov, S. N. Shurov, and Yu. V. Shklyaev, *Izv. Akad. Nauk, Ser. Khim.*, 2001, 1571 [Russ. Chem. Bull., Int. Ed., 2001, 50, 1648].
- 3. V. A. Glushkov, O. G. Ausheva, G. A. Postanogova, and Yu. V. Shklyaev, *Khim. Geterotsikl. Soedin.*, 2000, 1559 [*Chem. Heterocycl. Compd.*, 2000 (Engl. Transl.)].
- A. Baeyer, Ber., 1872, 5, 25, 280, 1094; K. Hultzsch, Chemie der Phenolharze, Springer, Berlin, 1950, 193 S.
- J. J. Ritter and J. K. Minari, J. Am. Chem. Soc., 1948, 70, 4045; L. I. Krimen and D. J. Cota, Org. React., 1969, 17, 213.
- V. A. Glushkov, Yu. V. Shklyaev, V. I. Sokol, V. S. Sergienko, and V. V. Davidov, *Mendeleev Commun.*, 1998, 227; 1999, 170.
- B. B. Aleksandrov, M. S. Gavrilov, M. I. Vakhrin, and V. S. Shklyaev, *Khim. Geterotsikl. Soedin.*, 1985, 794 [Chem. Heterocycl. Compd., 1985 (Engl. Transl.)].
- 8. O. Barun, P. K. Mohanta, H. Ila, and H. Junjappa, *Synlett*, 2000, No. 5, 653.
- V. S. Shklyaev, B. B. Aleksandrov, M. S. Gavrilov, A. G. Mikhailovskii, and M. I. Vakhrin, *Khim. Geterotsikl. Soedin.*, 1988, 939 [Chem. Heterocycl. Compd., 1988 (Engl. Transl.)].
- 10. M. J. S. Dewar, E. G. Zoeblisch, E. F. Healy, and J. J. P. Stewart, *J. Am. Chem. Soc.*, 1985, **107**, 3902.
- 11. J. J. P. Stewart, *MOPAC, Version 7.0*, Frank J. Seiler Research Laboratory, US Air Force Academy, QCPE 175.

^{(16); 216} $[M - OEt]^+$ (22); 200 $[M - Me - OEt - H]^+$ (70); $188 [M - COOEt]^{+} (21); 172 [M - Me - COOEt - H]^{+} (28);$ $160 [M - C_4H_8 - OEt]^+ (43); 148 [M - NCCH_2COOEt]^+$ (93); $133 [M - Me - NCCH₂COOEt]^+$ (100); 120 (12); 107(48). IR (Vaseline oil), v/cm⁻¹: 3325 (NH), 1660 (C=O), 1615 (sh, O—C=O), 1600 (C=C). ¹H NMR (300 MHz, DMSO-d₆), δ: 1.15 (t, 3 H, Me, J = 7.0 Hz); 1.44 (s, 6 H, C(3)Me₂); 2.15 (s, 2 H, $C(4)H_2$); 3.97 (m, 3 H, $OCH_2 + -CH=$); 6.15 (d, 2 H, C(7)H and C(9)H, J = 10.1 Hz); 6.99 (d, 2 H, C(6)H and C(10)H, J = 10.1 Hz); 8.23 (s, 1 H, NH). ¹H NMR (80 MHz, CDCl₃), δ : 1.16 (t, 3 H, Me, J = 7.0 Hz); 1.40 (s, 6 H, C(3)Me₂); 2.11 (s, 2 H, C(4)H₂); 3.98 (q, 3 H, OCH₂, J = 7.0 Hz); 4.23 (s, 1 H, -CH=); 6.13 (d, 2 H, C(7)H and C(9)H, J = 10.1 Hz); 6.77 (d, 2 H, C(6)H and C(10)H, J = 10.1 Hz); 7.85 (br.s, 1 H, NH). 13 C NMR (DMSO-d₆), δ : 14.38 (Me); 30.18 (C(3)Me₂); 45.39 (C(4)); 52.76* (OCH₂); 57.62* (C(3)); 61.49* (—CH=); 76.39 (C(5)); 126.83 (C(7), C(9)); 150.77 (C(6), C(10)); 160.74 (C(1)); 168.56 (OC(=O); 184.09 (C(8)). Found (%): C, 69.02; H, 7.27, N, 5.49. $C_{15}H_{19}NO_3$. Calculated (%): C, 68.94; H, 7.33; N, 5.36.

^{*} These signals may be interchanged.